Diverse genome sequences provide a powerful tool for studying risk of heart disease

Study of millions of people from diverse ancestral groups substantially improves identification of genomic variants associated with blood lipid levels.

National Institutes of Health (NIH)

In a large-scale study of people from diverse ancestries, researchers narrowed down the number of genomic variants that are strongly associated with blood lipid levels and generated a polygenic risk score to predict elevated low-density lipoprotein cholesterol levels, a major risk factor for heart disease. The study, published in the journal Nature(link is external), was led by the Global Lipids Genetics Consortium. The authors include researchers at the National Human Genome Research Institute (NHGRI), part of the National Institutes of Health.  

Lipids are fat-like substances that can be found in blood and body tissues. They come in two major forms — cholesterol and triglycerides. Humans need a certain amount of lipids in the body for normal function, but elevated lipid levels may increase the risk of developing a heart condition. Polygenic risk scores provide an estimate of an individual’s risk for specific diseases, based on their DNA changes related to those diseases.

“Finding the set of genomic variants that are important for this trait is key for us to understand the biology and identify new drug targets,” said Cristen Willer, Ph.D., senior author and professor of human genetics at the University of Michigan, Ann Arbor. ”These genomic variants then inform how well polygenic risk scores work to determine risk for such diseases.”

Since the field’s inception, the genomics community has performed over 6,000 studies looking at the association of specific genomic variants and cardiovascular disease. However, the design of these studies overwhelmingly included individuals from European ancestral populations. Read more …